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Abstract. A real-space renormalisation group (RG) approach for polymers is presented and 
is used to calculate the exponent v for the radius of gyration of three types of molecules on a 
square lattice. In all three cases the excluded volume effect is taken into account. The three 
cases studied are linear polymers, randomly branched polymers without loops and 
randomly branched polymers in which branch end-points are allowed to join either to other 
branch ends or to polyfunctional units, thereby forming loops. We refer to the latter two 
configurations as branched polymers and branched polymers with loops, respectively. We 
find that v decreases from its linear chain value as the concentration of polyfunctional units 
is increased and branched polymers are formed. However, v is only slightly changed as loop 
fugacity is increased and branched polymers with loops are produced. Next, a new 
two-parameter RG is developed and it is found that linear polymers and branched polymers 
are described by two different fixed points, indicating that they belong to different 
universality classes. As the fugacity for loop formation is increased, the global flow diagram 
remains unchanged. This result supports the hypothesis that branched polymers with and 
without loops, in a good solvent, belong to the same universality class. 

1. Introduction 

Linear polymers are formed when a large number of bivalent monomers join to form a 
chain molecule. In the presence of a good solvent, repulsive monomer-monomer 
interactions lead to the excluded volume effect (Flory 1971), and statistics of long, 
isolated linear molecules are equivalent to self -avoiding walks (SAWS) on a lattice. With 
polyfunctional units, branched molecules can form, and the statistics of such polymer 
molecules are much more complex than those of the linear chain. Very recently, 
Redner (1979) has used Monte Carlo methods, and Lubensky and Isaacson (1979) have 
used field-theoretic RG techniques to study the statistics of branched polymers in a good 
solvent. 

In this Letter, we present preliminary results of a real-space renormalisation group 
(RSRG) study of linear polymers and branched polymers. Previous direct applications of 
RSRG to polymers have been limited to the study of SAWS (Shapiro 1978, de Queiroz 
and Chaves 1979, Redner and Reynolds 1980, unpublished). However, using the 
techniques presented here, we study three types of molecular configurations in a good 
solvent where the excluded volume effect is present. We use a two-dimensional lattice 
model in which bifunctional monomers are represented by lattice bonds and poly- 
functional branching units are represented by lattice sites. We calculate the exponent v 
for the radius of gyration of linear polymers, randomly branched polymers without 
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loops and randomly branched polymers in which branch end-points are allowed to join 
either to other branch ends or to polyfunctional units, thereby forming a closed loop. 
Throughout this paper, we refer to the latter two molecular configurations as branched 
polymers and branched polymers with loops. In addition, we develop a two-parameter 
RG for polymers in which both the monomer fugacities and the concentration of 
polyfunctional units are renormalised. The model of branched polymers with loops 
presented here has the same statistics as random bond animals on a lattice (Lubensky 
and Isaacson 1979). Applications of the techniques presented here to the animal 
problem will be presented elsewhere (Family 1980, unpublished). 

The outline of this Letter is as follows. The lattice model of polymers is defined in 
3 2. In 0 3, we first outline the RSRG approach for polymers and then use it to study the 
three types of polymers mentioned above. In §4, we present a two-parameter RG 
transformation for polymers. We discuss the results and give a brief summary in 3 5 .  

2. The model 

Consider a regular lattice of bonds and sites. If each bond is regarded as a monomer, a 
single connected cluster of n bonds is an isolated polymer molecule of size n. When 
polyfunctional units are introduced, they can occupy the sites and branches may form 
by the attachment of three or more monomers to these sites. We assume that the 
excluded volume constraint is present, and therefore a branch cannot intersect itself or 
another branch and only one monomer may join two neighbouring sites on the lattice. 
We use this model to study linear polymers, branched polymers and branched polymers 
with loops. 

The basic function of interest is the number of polymers of size n, W,. We define the 
generating function W ( p )  as 

The parameter p is the weight or fugacity associated with a monomer, so that a polymer 
of size n has a weight p" .  The mean-square radius of gyration (Ri) and the mean- 
square end-to-end length (* are defined by 

and 

where Wn(r i )  is the number of polymers of size n with the ith site at a distance ri from the 
centre of mass. The analogy of the above relations to counterparts in thermal phase 
transitions motivates the following definitions of polymer critical exponents. In the 
limit n + CO, we write 
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where p c  = p- ' .  The connectivity constant p is a lattice-dependent quantity that 
increases with increasing coordination number. On the basis of the universality 
hypothesis in phase transitions, we expect the exponents Y and 8 to be universal and 
independent of the detailed form of the lattice chosen for the model. We will 
concentrate on the calculation of v and p c  in this paper and will not discuss the exponent 
8 any further. 

3. Real-space renormalisation group for polymers 

The RG approach we use is a modified version of the RSRG developed for the percolation 
model by Reynolds et a1 (1977). The basic difference is that the parameter p for a 
polymer is a fugacity and not a probability. We first choose a lattice and partition it into 
cells that both cover the lattice and maintain its original symmetry. For the ease of 
calculations, we choose a square lattice and divide it into cells; one such cell is shown in 
figure 1. The RG transformation renormalises a polymer of size n (and weight p " )  to a 
single monomer of weight p' in the horizontal (vertical) direction if it 'gets across' the 
cell horizontally (vertically). In the cell shown in figure 1, we define getting across 
horizontally (vertically) as starting at 0 and ending at either point 1 or 2 (3 or 4). Other 
definitions of 'getting across' may be used, and it is expected that all acceptable rules 
converge to the same results in the large cell. 

1 7 

P P' 

Figure 1. An example of the elementary cells used for polymer configurations on a square 
lattice. The case shown is a 2 x 2 cell. After renormalisation the cell becomes a horizontal 
(vertical) monomer if the polymer configuration spans horizontally (vertically). 

We define an RG transformation by the sum of the configurational weights of all 
polymers which get across the cell. The non-trivial fixed point p" (Wilson 1975) of this 
transformation gives an estimate of pc(=l /p) .  The exponent v is then given by 

v = ln(L)/ln A ,  (7) 

where A is the eigenvalue of the linearised RG transformation about p = p " ,  and L is the 
rescaling length. 

Consider the 2 x 2 cell of figure 1. Here, L = 2 and there are 8 bonds on which 
monomers may be placed. If branching and loop formation are excluded, then the only 
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possible configurations are SAWS (or linear polymer chains), and the recursion relation 
for this case is 

The non-trivial fixcd point is at p *  = 0.4656 and v = 0.7152 (de Queiroz and Chaves 
1979). If we introduce polyfunctional units, but still prohibit loop formation, then three 
or more monomers can branch out from a site and the resulting molecule will be a 
(tree-like) branched polymer. The recursion relation becomes 

= p2+2p3 +p4. (8) 

p ’ = p 2 + 4 p 3 + 1 4 p 4 + 2 2 p 5 +  16p6+4p7.  ( 9 )  
The fixed point of this recursion relation is at p *  = 0,2725 and the exponent v = 0.5760. 
If we now allow the branch ends to join to other branch ends or to polyfunctional units 
and form loops, the number of possible configurations increases. The recursion relation 
becomes 

p’=p2+4p3+14p4+24p5+21p6+8p7+p8.  (10)  
Now, the fixed point is at p*  = 0.2702 and v = 0.5712. 

In order to treat linear polymers and branched polymers with the same RG 
transformation, we introduce two new parameters into the model. We choose b to 
represent the probability that a randomly chosen site on a polymer is a polyfunctional 
unit, and we choose 1, which we shall call the loop parameter, to represent the fugacity 
for the branch ends to join and form loops. When b and 1 are zero, only linear chains 
can occur. As b increases, but 1 = 0, tree-like branched polymers are produced. Finally, 
for non-zero values of 1 the end-points in the branched polymer may join together or to 
a branching unit to form loops. With these additional parameters, the three recursion 
relations (8), ( 9 )  and (10)  can be combined into one general expression. The result is 

p ’  = p 2 + p 3 ( 2 + 2 b ) + p 4 ( l  + 12b + b 2 ) + p 5 ( 1 0 b  + 12b2+2b2E) 

+p6(2b + 12b2 + 2b3 + b21 +4b31) +p7(2b2+ 2b3 +2b31 +2b41) +p8b41. 
( 1  1) 

Clearly, equation ( 1 1 )  redwes to equation ( 8 )  if both b and 1 are zero, while for b = 1 ,  
1 = 0 it reduces tn equation (9) and finally for b = 1 = 1 it reduces to equation (10) .  

Next. we study the 3 x 3 cell. This cell has 18 bonds on which monomers may be 
placed. The recursion relation has the form 

18 9 4 

p ’ =  c(s, r, n ) b s l r p n ,  
r = l  7-0  r = O  

where s is the number of branch points, r is the number of closed loops, and n is the 
number of monomers. The coefficients c ( r ,  s, n )  are too long to be reproduced here, but 
the results for v and p *  obtained using equation (12)  for the three cases of interest are 
shown in table 1 ,  along with the values obtained for the 2 X 2 cell. 

The result for the SAW exponent improves as the cell size increases. This is to be 
expected because, as the size of the cell increases, the corrections due to surface effects 
decrease. However, for cells of appreciable size, calculating the exact recursion relation 
is not possible, Thus, we must find other methods to obtain more accurate results. 

One possibility is simply to extrapolate our two-point results to the L + 00 limit. 
Following equation (7) ,  Reynolds et a1 (1978, 1980) have suggested that the sequence 
v- ’ (L)  should be extrapolated against the variable l/ln(L). In the asymptotic limit 
(L + CO) the intercept should be the true eigenvalue. In this way we find v (SAW) = 
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Table 1. The results for U and p E  are listed for the three types of polymer configurations 
considered. Our best estimates are those obtained by the ‘cell-to-cell’ transformation 
technique (L  + 1) in which cells of size L = 3 are renormalised to cells of size L = 2. 

Polymer L = 2  L = 3  L + l  
configuration 

Linear 0.7152 0.7187 0.7226 
U Branched 0.5760 0,5986 0.6370 

Branched with loops 0,5712 0.5926 0,6273 
~~ ~ ~ 

Linear 0.4656 0.4468 0,4319 
ec = CL-’ Branched 0.2725 0,2642 0.2577 

Branched with loops 0,2702 0.2609 0.2538 

0.725, v(branched polymer) = 0.641 and v(branched polymer with loops) = 0.633. 
Indeed these numbers extrapolate in the right direction. However, we refrain from 
attaching much significance to this two-point extrapolation for two reasons. First, there 
are no theoretical arguments that show how the extrapolation ought to be carried out 
for small L. Second, Reynolds eta1 (1978,1980) have found that there is a considerable 
curvature in extrapolation of the small-cell results. Therefore, extrapolation of small- 
size cells to the L+0O limit is suspect on general grounds. Once large-cell RG 
techniques are used then the results can be extrapolated to the L + 00 limit. 

One can also consider the opposite case: an ‘infinitesimal transformation’ in which 
L + 1 (Reynolds et a1 1978). In this limit the RG transformation should become exact. 
We first rescale a cell of linear dimension L to a monomer and obtain a transformation 
R (L) .  Another cell, with linear dimension L’ slightly smaller than L, has an analogous 
transformation R (L’). We use these two recursion relations to define implicitly a 
‘cell-to-cell’ transformation from a cell of size L to a cell of size L’. This transformation 
rescales the length by L/L’. The value of p at which R ( L )  = R (L’) corresponds to pc .  
The exponent v is obtained from 

v = ln(L/L’)/{ln[dR(L)]/ln[dR (L’)I),=,*, (13) 

where p*  is the fixed point value of p in the cell-to-cell transformation, and dR means 
dR/dp. 

From equations (11) and (12) we calculate the recursion relation for the ‘3 x 3 to 
2 x 2 ’  transformation. The exponent v and p c  are determined as a function of the 
branching probability and the loop parameter for the three cases of interest, and the 
results are listed in table 1. The result for v is also shown in figure 2. This consists of two 
graphs put next to one another. The left-hand plot ( a )  shows the decrease in v for a 
branched polymer as the concentration of polyfunctional units is increased (with 1 = 0). 
At the point b = 0 we obtain the SAW exponent for the linear chain. This value 
decreases as b + 1. At b = 1 and 1 = 0 we have the first point of the right-hand plot (b ) ,  
which shows the variation of v for a branched polymer as loop parameter is increased. 
In this graph, we have drawn a straight line at the value of v = 0.637 to emphasise that 
there is a very small change in the value of v as loop fugacity is increased from 0 to 1-a 
result which we had observed for all our small-cell calculations. If these results are any 
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b I 

Figure 2. Dependence of U on the concentration of polyfunctional units, b, and on the loop 
fugacity, 1. The graph (a ) ,  for I = 0, shows v against b when the molecular configurations are 
branched polymers without loops (tree graphs). The graph (61, for b = 1, shows the 
variation of U for a branched polymer as the fugacity for loops ( I )  is increased. The data are 
the results of the 'cell-to-cell' transformation and the solid lines are guides to the eye. In ( b )  
a straight line is drawn at the value of U = 0,637 to emphasise the small change in v as 1 is 
increased. 

indication of the true picture, they support the hypothesis (Lubensky and Isaacson 
1979) that branched polymers with and without loops belong to the same universality 
class. 

4. Two-parameter renormalisation group 

Thus far, we have considered a one-parameter renormalisation group. In the general- 
ised three-parameter recursion relations (11) and (12), b and 1 were included only as 
fixed, dependent parameters. A number of questions of interest, such as the nature of 
the crossover from the linear to branched polymers as b increases or whether the three 
types of polymers studied belong to the same universality class, cannot be answered by a 
one-parameter RG. As a first step in answering such questions, we consider a two- 
parameter RG transformation in which both the monomer weights and the branching 
probabilities are renormalised. However, we continue to treat 1 as a dependent 
variable. 

Our recursion relation for the renormalised monomer weight ( p ' )  is simply equation 
(1 l ) ,  discussed previously. We define a scheme for renormalising the polyfunctional 
units as follows. A configuration of polyfunctional units on the original cell renor- 
malises to a single branch point if the polymer configuration on the site part of the cell 
(the shaded region in figure 1) spans the cell either horizontally or vertically. This 
requires that a polymer start at 0 and be able to extend to either 1 or 2 or to 3 or 4. For 
example, in figure 3, we have shown a site configuration (figure 3(a ) )  which renor- 
malises to a branch point and one which does not (figure 3(b)) .  These conditions define 
a recursion formula, giving b', the renormalised branching probability, as a function of 
b. When all sites on a polymer are occupied by polyfunctional units ( b  = l), all sites on 
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I I 
I I 
I I 

Figure 3. Renormalisation of polyfunctional units. A polymer configuration with poly- 
functional units renormalises to b' if it can extend either to 1 or 2 or to 3 or 4. ( a )  Example of 
a configuration that renormalises to a polyfunctional unit. ( b )  Example of a configuration 
that cannot extend to either 1 or 2 or to 3 or 4. It does not renormalise to a polyfunctional 
unit. 

the renormalised polymer must be occupied by branching units (b' = 1).  To preserve a 
probabilistic interpretation of b and b',  we write b' as the sum of all branched polymers 
that renormalise according to the criterion we described above, divided by all possible 
configurations. The denominator will include all diagrams of the type shown in figure 3,  
whereas the numerator includes only the spanning configurations, such as the one 
shown in figure 3(a) .  In this way we find 

b' = N / D ,  (14)  
where 

N = b(l-b)3(4p+7pZ+10p3)+b2(1-b)2(2p+8p2+18p3+3p41) 

+ b3(1 - b)(3p2 + 14p3 + 3p41) + b4(4p3 +p41) ,  

D = 2 p ( l -  b )2+p2(2-  b - b2)+2p3(1 + b)+p4bl.  

The coupled recursion relations ( 1  1)  and (14)  together constitute a two-parameter RG 
transformation. When b " 0 ,  b'+ 0 and equation (11)  reduces to equation (8). When 
b + 1, b'+ 1 and equation (11)  reduces to that for the branched polymer. Note that b' 
vanishes when p + 0, indicating that there cannot be any polymer configuration with 
polyfunctional units alone. 

Equations (11)  and (14)  may be solved numerically for the fixed points, critical 
surface and critical exponents. For 1 = 0 the global flow is shown in figure 4 .  There are 
two unstable fixed points at ( p * ,  b*) = (0.4656,O.O) and (0*2725,100), corresponding to 
the SAW fixed point and the branched polymer fixed point, respectively. The direction 
of the flow is from the line of zero branching probability (i.e. linear polymers) to the 
branched polymer fixed point, indicating that linear polymers and branched polymers 
belong to two different universality classes. The branched polymer fixed point controls 
the flow away from the b = 0 axis. The critical surface is shown as the solid line in figure 
4.  It is obtained by following the flow trajectories from the SAW fixed point towards the 
branched polymer fixed point. Along this line the critical behaviour is that of the 
branched polymer. 

Linearisation of the recursion relations (11)  and (14)  near the SAW fixed point 
( p *  = 0.4656, b* = 0)  gives A I  = 2.636 and A 2  = 2.802 for the eigenvalues along the p 
and b axes, respectively. Since both eigenvalues are greater than unity, the SAW fixed 
point is unstable in both directions. The exponent v (along the SAW line, (b  = 0)) is 
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unchanged. The crossover exponent q5 = In A = 1.1. This means that the critical 
curve leaves the SAW point tangentially to the p axis. 

By linearising the recursion relations near the branched polymer fixed point 
( p *  = 0,2725, b* = l ) ,  we find only one non-zero eigenvalue, A = 3.331. Thus, only 
one eigenvalue is relevant and the two-parameter group does not change the critical 
exponents of the branched polymer, but demonstrates that the SAWS and branched 
polymers belong to two different universality classes. 

The above discussion was limited to the case 1 = 0, but we find that as 1 changes from 
0 to 1 the global picture of the flow vectors remains unchanged. There is only a slight 
change in the position of the fixed point at b = 1, but no new fixed point is found. Thus, 
we are led to believe that branched polymers with and without loops belong to the same 
universality class, as suggested by Lubensky and Isaacson (1979). 

8’ 

5. Discussion and summary 

-8-+-.+-.b--+--b--+4--~~ 

We now turn to a discussion of our numerical estimates of v and p c ,  shown in table 1. 
Our best estimates are those obtained using the ‘infinitesimal transformation’ (L + 1). 
For two-dimensional linear polymers, the best estimate for v is 0.75 and for p , (=  1/p) 
on a square lattice is about 0.38 (McKenzie 1976), which is consistent with our 
preliminary results. For branched polymers in a good solvent, we know only of the 
works of Redner (1979), and of Lubensky and Isaacson (1979). 

Redner (1979) has used Monte Carlo techniques to study the mean end-to-end 
distance of branched polymers and branched polymers in which branch end-points are 
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allowed to join and form loops. He  finds the same value of Y for both branched 
polymers and branched polymers with loops-this conclusion is consistent with our 
result that loops are not important for branched polymers in a good solvent. However, 
the statistics of Redner’s branched polymers are different from those discussed here, 
and his exponent need not have the same value as our estimate. 

Lubensky and Isaacson (1979) have used a field-theory RG technique to study the 
model of branched polymers discussed here. In an E expansion about E = 8 - d, they 
calculate the critical exponents. Unfortunately, since E = 6 when d = 2, their results for 
the exponents cannot be useful numerically in two dimensions. However, Lubensky 
and Isaacson point out that the generating function defined by equation (1) is equivalent 
to the generating function for the number of random animals on a lattice. Thus, the 
exponent Y for a branched polymer with loops is equivalent to the exponent p defined 
by Stauffer (1979) for the mean radius of gyration of a random animal. Monte Carlo 
results for two-dimensional site random animal radii predict Y to be about 0.65 to 0.66 
(Stauffer 1979). If site and bond animals belong to the same universality class, then v 
should be the same for bond animals and branched polymers with loops, which is 
consistent with our estimates. 

The lattice connectivity constant p has been calculated for the bond animals in the 
study of d-dimensional percolation processes (Gaunt and Ruskin 1978). The best 
estimate for p (called A in the animal literature) for bond clusters on a square lattice 
gives p c  of about 0.2 for branched polymers with loops, again consistent with our 
preliminary estimates. 

In summary, we have presented a real-space renormalisation group approach for 
polymers that can be applied to both linear and branched polymer configurations. 
Whenever comparison is possible, our numerical results are consistent with the 
available estimates. In addition, we have developed a two-parameter RG trans- 
formation, and have found that linear polymers and branched polymers are described 
by two different fixed points, and therefore belong to two different universality classes. 
As the loop fugacity is increased, the global flow diagram and the critical exponents 
remain essentially unchanged. This result supports the hypothesis that branched 
polymers with and without loops belong to the same universality class (Lubensky and 
Isaacson 1979). 
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